Continuous Distributions

Questions

Q1.

Fence panels come in two sizes, large and small. The lengths of the large panels are normally distributed with mean 198 cm and standard deviation 5 cm. The lengths of the small panels are normally distributed with mean 74 cm and standard deviation 3 cm.

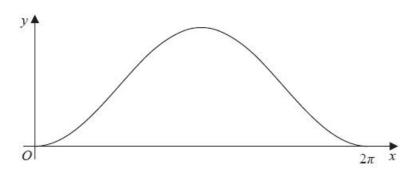
(a) Find the probability that the total length of a random sample of 3 large panels is greater than the total length of a random sample of 8 small panels.

(6)

One large panel and one small panel are selected at random

(b) Find the probability that the length of the large panel is more than $\overline{3}$ times the length of the small panel.

(5)


Rosa needs 1000 cm of fencing. The large panels cost £80 each and the small panels cost £30 each. Rosa's plan is to buy 5 large panels and measure the total length. If the total length is less than 1000 cm she will then buy one small panel as well.

(c) Calculate whether or not the expected cost of Rosa's plan is cheaper than simply buying 14 small panels.

(6)

(Total for question = 17 marks)

Q2.

The random variable X has probability density function f(x) and Figure 1 shows a sketch of f(x) where

$$f(x) = \begin{cases} k(1 - \cos x) & 0 \le x \le 2\pi \\ 0 & \text{otherwise} \end{cases}$$

(a) Show that $k = \frac{1}{2\pi}$

The random variable $Y \sim N(\mu, \sigma^2)$ and E(Y) = E(X)

The probability density function of Y is g(y), where

$$g(y) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2} \qquad -\infty < y < \infty$$

Given that $g(\mu) = f(\mu)$

(b) find the exact value of σ

(c) Calculate the error in using
$$P\left(\frac{\pi}{2} < Y < \frac{3\pi}{2}\right)$$
 as an approximation to $P\left(\frac{\pi}{2} < X < \frac{3\pi}{2}\right)$ (4)

(Total for question = 10 marks)

(3)

(3)

Q3.

A circle, centre O, has radius x cm, where x is an observation from the random variable X which has a rectangular distribution on $[0, \pi]$

(a) Find the probability that the area of the circle is greater than 10 cm²

(b) State, giving a reason, whether the median area of the circle is greater or less than 10 \mbox{cm}^2

The triangle OAB is drawn inside the circle with OA and OB as radii of length x cm and angle AOBx radians.

(c) Use algebraic integration to find the expected value of the area of triangle OAB. Give your answer as an exact value.

(7)

(3)

(1)

(Total for question = 11 marks)

Q4.

The continuous random variable X has a probability density function

$$f(x) = \begin{cases} k(x-2) & 2 \le x \le 3\\ k & 3 < x < 5\\ k(6-x) & 5 \le x \le 6\\ 0 & \text{otherwise} \end{cases}$$

where *k* is a positive constant.

- (a) Sketch the graph of f (*x*).
- (b) Show that the value of k is $\frac{1}{3}$

(c) Define fully the cumulative distribution function F(x).

(d) Hence find the 90th percentile of the distribution.

(e) Find P[E(X) < X < 5.5]

(2)

(2)

(2)

(7)

(3)

(Total for question = 16 marks)

Q5.

The lifetime, X, in tens of hours, of a battery is modelled by the probability density function

$$f(x) = \begin{cases} \frac{1}{9}x(4-x) & 1 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$

Use algebraic integration to find

(a) E(X) (4)

(b)
$$P(X > 2.5)$$

(3)

A radio runs using 2 of these batteries, both of which must be working. Two fully-charged batteries are put into the radio.

(c) Find the probability that the radio will be working after 25 hours of use.

Given that the radio is working after 16 hours of use,

(d) find the probability that the radio will be working after being used for another 9 hours.

(3)

(2)

(Total for question = 12 marks)

Q6.

The continuous random variable X has cumulative distribution function given by

$$F(x) = \begin{cases} 0 & x \le 0\\ k\left(x^3 - \frac{3}{8}x^4\right) & 0 < x \le 2\\ 1 & x > 2 \end{cases}$$

where k is a constant.

(a) Show that $k = \frac{1}{2}$

(b) Showing your working clearly, use calculus to find

- (i) E(*X*)
- (ii) the mode of X

(6)

(1)

(c) Describe, giving a reason, the skewness of the distribution of X

(1)

(Total for question = 8 marks)

Q7.

Lloyd regularly takes a break from work to go to the local cafe. The amount of time Lloyd waits to be served, in minutes, is modelled by the continuous random variable T, having probability density function

$$\mathbf{f}(t) = \begin{cases} \frac{t}{120} & 4 \leq t \leq 16\\ 0 & \text{otherwise} \end{cases}$$

(a) Show that the cumulative distribution function is given by

$$F(t) = \begin{cases} 0 & t < 4 \\ \frac{t^2}{240} - c & 4 \le t \le 16 \\ 1 & t > 16 \end{cases}$$

where the value of *c* is to be found.

(b) Find the exact probability that the amount of time Lloyd waits to be served is between 5 and 10 minutes.

- (c) Find the median of T.
- (d) Find the value of k such that

$$P(T < k) = \frac{2}{3} P(T > k)$$

giving your answer to 3 significant figures.

(3)

(Total for question = 9 marks)

(2)

(2)

(2)

Q8.

The continuous random variable X has cumulative distribution function

$$\mathbf{F}(x) = \begin{cases} 0 & x < 4\\ px - k\sqrt{x} & 4 \leqslant x \leqslant 9\\ 1 & x > 9 \end{cases}$$

where *p* and *k* are constants.

(a) Find the value of *p* and the value of *k*.

119

(4)

Given that E(X) = 18

(b) show that Var(X) = 2.05 to 3 significant figures.

(6)

(c) Write down the mode of *X*.

(1)

(d) Find the exact value of the constant a such that $P(X \le a) = \frac{7}{27}$

(3)

(2)

(2)

(3)

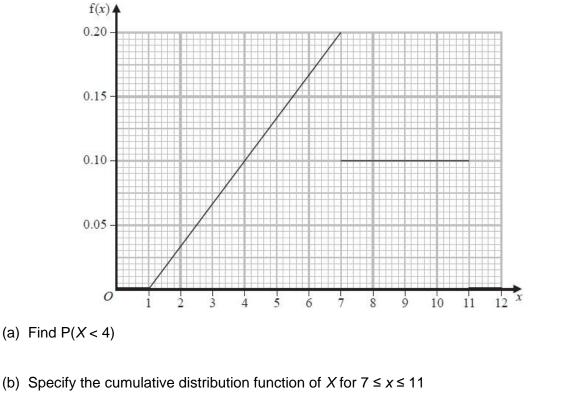
(Total for question = 14 marks)

Q9.

The continuous random variable X has cumulative distribution function given by

$$F(x) = \begin{cases} 0 & x < 2\\ 1.25 - \frac{2.5}{x} & 2 \le x \le 10\\ 1 & x > 10 \end{cases}$$

(a) Find $P(\{X < 5\} \cup \{X > 8\})$


(b) Find the median of X.

- (c) Find $E(X^2)$
- (d) (i) Sketch the probability density function of X.
 - (ii) Describe the skewness of the distribution of *X*.

(3) (Total for question = 10 marks)

Q10.

The graph shows the probability density function f(x) of the continuous random variable X

(3)

(3)

(2)

(2)

(Total for question = 5 marks)

Q11.

A random variable X has probability density function given by

$$f(x) = \begin{cases} 0.8 - 6.4x^{-3} & 2 \le x \le 4\\ 0 & \text{otherwise} \end{cases}$$

The median of X is m

- (a) Show that $m^3 3.625m^2 + 4 = 0$
- (b) (i) Find *f*ʹ(*x*)
 - (ii) Explain why the mode of X is 4

Given that $E(X^2) = 10.5$ to 3 significant figures,

(c) find Var(X), showing your working clearly.

(4) (Total for question = 9 marks)

Q12.

Korhan and Louise challenge each other to find an estimator for the mean, μ , of the continuous random variable *X* which has variance σ^2

 $X_1, X_2, X_3, ..., X_n$ are *n* independent observations taken from X

Korhan's estimator is given by

$$K = \frac{2}{n(n+1)} \sum_{r=1}^{n} r X_r$$

Louise's estimator is given by

$$L = \frac{X_1 + X_2}{3} + \frac{X_3 + X_4 + \ldots + X_n}{3(n-2)}$$

- (a) Show that K and L are both unbiased estimators of μ
- (b) (i) Find Var (K)
 - (ii) Find Var (L)

The winner of the challenge is the person who finds the better estimator.

(c) Determine the winner of the challenge for large values of *n*. Give reasons for your answer.

(3) (Total for question = 15 marks)

(5)

(7)

Q13.

The continuous random variable X has cumulative distribution function given by

$$F(x) = \begin{cases} 0 & x < 1\\ 1.5x - 0.25x^2 - 1.25 & 1 \le x \le 3\\ 1 & x > 3 \end{cases}$$

(a) Find the exact value of the median of X

(2)

(3)

(4)

(b) Find P(X < 1.6 | X > 1.2)

The random variable $Y = \frac{1}{X}$

(c) Specify fully the cumulative distribution function of Y

(d) Hence or otherwise find the mode of Y

(3) (Total for question = 12 marks)

Q14.

The continuous random variable X is uniformly distributed over the interval [α , β]

Given that E(X) = 3.5 and $P(X > 5) = \frac{2}{5}$

(a) find the value of α and the value of β

Given that $P(X < c) = \frac{2}{3}$

- (b) (i) find the value of c
 - (ii) find P(c < X < 9)

(3)

(4)

A rectangle has a perimeter of 200 cm. The length, *S* cm, of one side of this rectangle is uniformly distributed between 30 cm and 80 cm.

(c) Find the probability that the length of the shorter side of the rectangle is less than 45 cm.

(4)

(Total for question = 11 marks)

Q15.

The continuous random variable X is uniformly distributed over the interval [0, 4β], where β is an unknown constant.

Three independent observations, X_1 , X_2 and X_3 , are taken of X and the following estimators for β are proposed

$$A = \frac{X_1 + X_2}{2}$$
$$B = \frac{X_1 + 2X_2 + 3X_3}{8}$$
$$C = \frac{X_1 + 2X_2 - X_3}{8}$$

(a) Calculate the bias of A, the bias of B and the bias of C

(5)

- (b) By calculating the variances, explain which of *B* or *C* is the better estimator for β
- (4)

(c) Find an unbiased estimator for β

(1) (Total for question = 10 marks)

Q16.

The random variable X has the continuous uniform distribution over the interval [0.5, 2.5]

Talia selects a number, T, at random from the distribution of X

(a) Find P(T < 1)

(1)

Malik takes Talia's number, T, and calculates his number, M, where $M = \overline{T^2}$

(b) Find the probability that both T and M are less than 2.25

(3)

Raja and Greta play a game many times. Each time they play they use a number, R, randomly selected from the distribution of X

Raja's score is R

Greta's score is G, where $G = \frac{2}{R^2}$

(c) Determine, giving a reason, who you would expect to have the higher total score.

(5)

(Total for question = 9 marks)

Q17.

A rectangle is to have an area of 40 cm²

The length of the rectangle, L cm, follows a continuous uniform distribution over the interval [4, 10]

Find the expected value of the perimeter of the rectangle. Use algebraic integration, rather than your calculator, to evaluate any definite integrals.

(Total for question = 7 marks)

Q18.

The random variable X has a continuous uniform distribution over the interval [5, a], where a is a constant.

Given that $Var(X) = \frac{27}{4}$

(a) show that a = 14

(3)

The continuous random variable Y has probability density function

$$f(y) = \begin{cases} \frac{1}{20}(2y-3) & 2 \le y \le 6\\ 0 & \text{otherwise} \end{cases}$$

The random variable $T = 3(X^2 + X) + 2Y$

(b) Show that $E(T) = \frac{9857}{30}$

(7)

(Total for question = 10 marks)

Q19.

The three independent random variables A, B and C each have a continuous uniform distribution over the interval [0, 5].

(a) Find the probability that A, B and C are all greater than 3

(3)

The random variable Y represents the maximum value of A, B and C.

The cumulative distribution function of Y is

$$F(y) = \begin{cases} 0 & y < 0 \\ \frac{y^3}{125} & 0 \le y \le 5 \\ 1 & y > 5 \end{cases}$$

(b) Using algebraic integration, show that Var (Y) = 0.9375

(4)

(c)	Find the mode of Y, giving a reason for your answer.	$\langle 0 \rangle$
(d)	Describe the skewness of the distribution of Y. Give a reason for your answer.	(2)
(\mathbf{a})	Find the value of k such that $D(k \in V \in 2k) = 0.180$	(1)
(e)	Find the value of k such that $P(k < Y < 2k) = 0.189$	(3)

(Total for question = 13 marks)

Q20.

The continuous random variable X is uniformly distributed over the interval [-3, 5].

- (a) Sketch the probability density function f(x) of X.
- (2) (b) Find the value of *k* such that P(X < 2[k X]) = 0.25
- (c) Use algebraic integration to show that E(X³) = 17

(3)

(Total for question = 8 marks)

Q21.

(b) Find P(Y > 0)

(c) Find E(Y)

The continuous random variable X has probability density function

$$f(x) = \begin{cases} \frac{1}{8} & 1 \le x \le 9\\ 0 & \text{otherwise} \end{cases}$$

(a) Write down the name given to this distribution.

The continuous random variable Y = 5 - 2X

(2)

(d) Find P(Y < 0 |
$$X$$
 < 7.5) (2)

(3)

(1)

(Total for question = 8 marks)

Q22.

The continuous random variable X has cumulative distribution function

$$F(x) = \begin{cases} 0 & x < 3\\ c - 4.5x^n & 3 \le x \le 9\\ 1 & x > 9 \end{cases}$$

where *c* is a positive constant and *n* is an integer.

(a) Showing all stages of your working, find the value of c and the value of n

(b) Find the lower quartile of X

(7)

(2)

(Total for question = 9 marks)

Mark Scheme – Continuous Distributions

Q1.

Qu	Scheme	Marks	AO
(a)	$X = L_1 + L_2 + L_3 \sim N(594, \sqrt{75}^2)$	M1	3.3
	$\overline{\overline{z}}^2$	A1	1.1b
	$Y = S_1 + + S_8 \sim N(592, \sqrt{72}^2)$	A1	1.16
	$P(X > Y) = P(D > 0)$ where $D \sim N(2, \sqrt{147}^2)$	M1	2.1
		Alft	1.1b
	= 0.56551 awrt <u>0.566</u>	A1 (6)	3.4
(b)	(2 - 64) = (2 - 64) = (2 - 72)	M1	3.3
(3)(8)	$W = L - \frac{8}{3}S \implies W \sim N\left(\frac{2}{3}, 25 + \frac{64}{9} \times 9\right) = N\left(\frac{2}{3}, \sqrt{89}^2\right)$	M1,A1	2.1,1.1b
	P(W > 0) = 0.528168 awrt <u>0.528</u>	M1A1	3.4,1.1b
		(5)	
(c)	$F = L_1 + + L_5 \sim N(990, \sqrt{125}^2)$	M1	3.1b 1.1b
	P(F < 1000) = 0.814455 (o.e.)	A1 A1	3.4
	$E(\cos t \text{ of } Rosa's \text{ plan}) = 430 \times "0.814" + 400 \times (1 - "0.814")$	M1	2.1
	$= \pm 424.43$	A1	1.16
	Buying 14 small panels cost $14 \times 30 = \pounds 420$		
	So Rosa's plan is likely to be more expensive	A1	3.2a
		(6)	
s		(17 marks	5)
	Notes		
(a)	1 st M1 for an attempt at X or Y – expression or implied by one correct 1 st A1 for a correct distribution for X or implied by $E(D) = 2$	distribution	
	2^{nd} A1 for a correct distribution for Y or implied by $Var(D) = 147$		
	2^{nd} M1 for a correct strategy – attempt $\overline{X} - Y$ and P(D > 0) statement		
	3^{rd} A1ft for a correct distribution for D ft their X and Y		
	4 th A1 for awrt 0.566		
(b)	1 st M1 for attempt at a correct model (normal and mean)		
(0)	2 nd M1 for correct expression for variance of their model provided of th	e form $L - kS$	or $kL - S$
	1 st A1 for a fully correct distribution		<u></u>
	3 rd M1 for a correct probability statement using their distribution		
	2 nd A1 for awrt 0.528		
(c)	1^{st} M1 for a correct start to solve the problem attempt at F and correct t	nean	
(-)	1 st A1 for a correct distribution	en al la companya da la companya da com	
	2^{nd} A1 for using this model to find P(F < 1000) = awrt 0.814 or P(F > 1	000) = awrt 0	.186
	2nd M1 for a correct strategy to solve the problem i.e. attempt at expected		
	3 rd A1 for awrt £424		2
	4 th A1 for a correct conclusion must have comparison with £420 and re		an
	[(c) is an extended problem and a 3.1, 3.2 question	nj	

Q2.	
-----	--

(b) $E(X) = \pi$ $\frac{1}{\sigma\sqrt{2\pi}} =$ (c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	x) $dx = [x - \sin x]$ primet limits and $\int f(x) dx = 1 \Rightarrow 2\pi - 0 - 0 = 1$ so $k = \frac{1}{2\pi}$ (*) (symmetry) so $\mu = \pi$ so $f(\mu) = \frac{1}{2\pi}(1 - \cos \pi) = \frac{1}{\pi}$ $\frac{\pi}{\pi}$; so $\sigma = \sqrt{\frac{\pi}{2}}$ $K < \frac{3\pi}{2} = \frac{1}{2\pi} [x - \sin x]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} [\left(\frac{3\pi}{2} - 1\right) - \left(\frac{\pi}{2} - 1\right)]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $K < \frac{3\pi}{2} = 0.7899$ is $0.81830 0.7899 = 0.0284$	M1 M1 A1*cso (3) B1 M1; A1 (3) M1 A1 B1	1.1b 1.1b 1.1b 2.2a 1.1b 1.1b 3.4 1.1b 1.1b		
(b) $E(X) = \pi$ $\frac{1}{\sigma\sqrt{2\pi}} =$ (c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	so $k = \frac{1}{2\pi}$ (*) (symmetry) so $\mu = \pi$ so $f(\mu) = \frac{1}{2\pi}(1 - \cos \pi) = \frac{1}{\pi}$ $\frac{\pi}{\pi}$; so $\sigma = \sqrt{\frac{\pi}{2}}$ $K < \frac{3\pi}{2} = \frac{1}{2\pi} [x - \sin x]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} \left[\left(\frac{3\pi}{2} - 1 \right) - \left(\frac{\pi}{2} - 1 \right) \right]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $K < \frac{3\pi}{2} = 0.7899$	A1*cso (3) B1 M1; A1 (3) M1 A1 B1	1.1b 2.2a 1.1b 1.1b 3.4 1.1b		
(b) $E(X) = \pi$ $\frac{1}{\sigma\sqrt{2\pi}} =$ (c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	so $k = \frac{1}{2\pi}$ (*) (symmetry) so $\mu = \pi$ so $f(\mu) = \frac{1}{2\pi}(1 - \cos \pi) = \frac{1}{\pi}$ $\frac{\pi}{\pi}$; so $\sigma = \sqrt{\frac{\pi}{2}}$ $K < \frac{3\pi}{2} = \frac{1}{2\pi} [x - \sin x]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} \left[\left(\frac{3\pi}{2} - 1 \right) - \left(\frac{\pi}{2} - 1 \right) \right]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $K < \frac{3\pi}{2} = 0.7899$	(3) B1 M1; A1 (3) M1 A1 B1	2.2a 1.1b 1.1b 3.4 1.1b		
$E(X) = \pi$ $\frac{1}{\sigma\sqrt{2\pi}} =$ (c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	$\frac{1}{\pi} = \frac{1}{\pi} = \frac{1}{2\pi} \left[x - \sin x \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} \left[\left(\frac{3\pi}{2} - 1 \right) - \left(\frac{\pi}{2} - 1 \right) \right]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $x < \frac{3\pi}{2} = 0.7899$	B1 M1; A1 (3) M1 A1 B1	1.1b 1.1b 3.4 1.1b		
$E(X) = \pi$ $\frac{1}{\sigma\sqrt{2\pi}} =$ (c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	$\frac{1}{\pi} = \frac{1}{\pi} = \frac{1}{2\pi} \left[x - \sin x \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} \left[\left(\frac{3\pi}{2} - 1 \right) - \left(\frac{\pi}{2} - 1 \right) \right]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $x < \frac{3\pi}{2} = 0.7899$	M1; A1 (3) M1 A1 B1	1.1b 1.1b 3.4 1.1b		
(c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	$X < \frac{3\pi}{2} = \frac{1}{2\pi} \left[x - \sin x \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} \left[\left(\frac{3\pi}{2} - 1 \right) - \left(\frac{\pi}{2} - 1 \right) \right]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $Y < \frac{3\pi}{2} = 0.7899$	A1 (3) M1 A1 B1	1.1b 3.4 1.1b		
(c) $P\left(\frac{\pi}{2} < X\right)$ $P\left(\frac{\pi}{2} < Y\right)$	$X < \frac{3\pi}{2} = \frac{1}{2\pi} \left[x - \sin x \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} = \frac{1}{2\pi} \left[\left(\frac{3\pi}{2} - 1 \right) - \left(\frac{\pi}{2} - 1 \right) \right]$ $= \frac{2 + \pi}{2\pi} (= 0.81830)$ $Y < \frac{3\pi}{2} = 0.7899$	(3) M1 A1 B1	3.4 1.1b		
$P\left(\frac{\pi}{2} < Y\right)$	$=\frac{2+\pi}{2\pi} (= 0.81830)$	M1 A1 B1	1.1b		
$P\left(\frac{\pi}{2} < Y\right)$	$=\frac{2+\pi}{2\pi} (= 0.81830)$	A1 B1	1.1b		
12	$\left(\frac{3\pi}{2}\right) = 0.7899\dots$	B1			
12	2)		1.1b		
So error i	0 91920 0 7900 0 0 0 0 0				
	15 0.01050 0.7099 = 0.0284	A1	1.1b		
		(4)			
	Notes (10 marks)				
(a) 1 st M1 at	ttempt to integrate $(1 - \cos x)$ - one correct term				
	2^{nd} M1 for use of correct limits and correct method for k				
A1* cso	use of $\int f(x) dx = 1$ seen and no incorrect working seen				
() D()					
이 사람이 있다. 다 가지 않는다.	M1 for a correct equation for σ – ft their value for f(μ) [condone for sight of correct g(μ)] A1 for $\sqrt{\frac{\pi}{2}}$ or exact equivalent				
Al for .	$\sqrt{\frac{\pi}{2}}$ or exact equivalent				
(c) M1 for a	M1 for a correct attempt to find prob - some correct integration and use of limits				
	1 st A1 for a correct answer (exact or 0.818 or better)				
	B1 for a correct probability from their calculator i.e. 0.7899 or better accept 0.79				
$2^{n\alpha}$ A1 fo	or 0.0284 or better				

(10)		
$P(\pi X^2 > 10) \implies P\left(X > \sqrt{\frac{10}{\pi}}\right)$	M1	3.1a
$=\frac{\pi-\sqrt{\frac{10}{\pi}}}{\pi}$	M1	2.1
= 0.43209 = awrt <u>0.432</u>	A1 (3)	1.1b
P(area > median) = 0.5; since (a) < 0.5 therefore <u>median < 10</u>	B1	2.2a
Area of triangle = $0.5x^2 \sin x$	M1	3.1a
$E(area) = \int_{[0]}^{[\pi]} \frac{1}{\pi} \frac{1}{2} x^2 \sin x dx$	M1	1.1b
$= \frac{1}{2\pi} \int_{[0]}^{[\pi]} x^2 \mathrm{d}(-\cos x) = \frac{1}{2\pi} \left\{ \left[-x^2 \cos x \right]_{[0]}^{[\pi]} - \int_{[0]}^{[\pi]} -2x \cos x \mathrm{d}x \right\}$	M1	2.1
$= \left\{ \left[\frac{-x^2 \cos x}{1 - x^2 \cos x} \right]^{[\pi]} \right\} + \left[\frac{x \sin x}{1 - \frac{1}{2}} \right]^{[\pi]} - \frac{1}{2} \int^{[\pi]} \sin x dx$	M1	1.1b
	A1	1.1b
$=\frac{\pi^2}{-0+0-0+(-1)-(1)}=\frac{\pi}{-2}$	M1	1.1b
2π (π) (π) $\frac{2}{2}$ π	5-5-5-1 2010-5-1	1.1b
		s)
Notes	1.3	í.
1^{st} M1reduce the problem to a probability about X 2^{nd} M1for use of the uniform distribution (a correct expression ft the for awrt 0.432	ir value 1.784.	.)
B1 for statement that median < 10 supported by argument about a	nswer <mark>t</mark> o (a) b	eing < 0.5
Median area is given by $\pi \times \left(\frac{\pi}{2}\right)^2 = 7.751 < 10$ so median	n < 10	
2 nd M1 for realisation that need to use $E(g(X))$ formula and a correct erate 3^{rd} M1 for attempt to use integration by parts 4 th M1 for a 2 nd use of integration by parts 1 st A1 for correct integration (ignore limits) 5 th M1 for clear use of the correct limits 2 nd A1 for $\frac{\pi}{2} - \frac{2}{\pi}$		
	$\pi = 0.43209 = awrt \ \underline{0.432}$ $P(area > median) = 0.5; \text{ since } (a) < 0.5 \text{ therefore } \underline{median} < 10$ $Area of triangle = 0.5x^{2} \text{sinx}$ $E(area) = \int_{[0]}^{[\pi]} \frac{1}{\pi} \frac{1}{2}x^{2} \sin x dx$ $= \frac{1}{2\pi} \int_{[0]}^{[\pi]} x^{2} d(-\cos x) = \frac{1}{2\pi} \left\{ \left[-x^{2} \cos x \right]_{[0]}^{[\pi]} - \int_{[0]}^{[\pi]} -2x \cos x dx \right\}$ $= \left\{ \left[\frac{-x^{2} \cos x}{2\pi} \right]_{[0]}^{[\pi]} \right\} + \left[\frac{x \sin x}{\pi} \right]_{[0]}^{[\pi]} - \frac{1}{\pi} \int_{[0]}^{[\pi]} \sin x dx$ $= \frac{\pi^{2}}{2\pi} - 0 + 0 - 0 + \left(-\frac{1}{\pi} \right) - \left(\frac{1}{\pi} \right) =, \frac{\pi}{2} - \frac{2}{\pi} \right]$ Notes $\frac{1^{at} M1}{1} \text{reduce the problem to a probability about } X$ $\frac{1^{at} M1}{2^{nd} M1} \text{for use of the uniform distribution (a correct expression ft the for awrt 0.432)$ $B1 \text{for statement that median} < 10 \text{ supported by argument about a}$ $Median \text{ area is given by } \pi \times \left(\frac{\pi}{2} \right)^{2} = 7.751 < 10 \text{ so median}$ $\frac{1^{at} M1}{1} \text{for a correct expression for area in terms of } x$ $\frac{n^{ad} M1}{1} \text{for a therempt to use integration by parts}$ $\frac{1^{at} A1}{1} \text{for correct integration by parts}$ $\frac{1^{at} A1}{1} \text{for clear use of the correct limits}$ $\frac{2^{nd} A1}{2^{nd} A1} \text{for clear use of the correct limits}$	$\pi = 0.43209 = \operatorname{awrt} \underline{0.432}$ P(area > median) = 0.5; since (a) < 0.5 therefore median < 10 Area of triangle = $0.5x^2 \sin x$ $E(area) = \int_{[0]}^{[\pi]} \frac{1}{\pi} \frac{1}{2}x^2 \sin x dx$ $= \frac{1}{2\pi} \int_{[0]}^{[\pi]} x^2 d(-\cos x) = \frac{1}{2\pi} \left\{ \left[-x^2 \cos x \right]_{[0]}^{[\pi]} - \int_{[0]}^{[\pi]} -2x \cos x dx \right\}$ $= \left\{ \left[\frac{-x^2 \cos x}{2\pi} \right]_{[0]}^{[\pi]} \right\} + \left[\frac{x \sin x}{\pi} \right]_{[0]}^{[\pi]} - \frac{1}{\pi} \int_{[0]}^{[\pi]} \sin x dx$ $= \frac{\pi^2}{2\pi} - 0 + 0 - 0 + \left(-\frac{1}{\pi} \right) - \left(\frac{1}{\pi} \right) = \frac{\pi}{2} - \frac{2}{\pi}$ M1 A1 $= \frac{\pi^2}{2\pi} - 0 + 0 - 0 + \left(-\frac{1}{\pi} \right) - \left(\frac{1}{\pi} \right) = \frac{\pi}{2} - \frac{2}{\pi}$ B1 for statement that median < 10 supported by argument about answer to (a) b Median area is given by $\pi \times \left(\frac{\pi}{2} \right)^2 = 7.751 < 10$ so median < 10 $\frac{1^{at} M1}{16 \text{ for a correct expression for area in terms of x} 2^{nd} M1 \text{ for a tempt to use integration by parts} $ $\frac{1^{at} A1}{16 \text{ for correct integration by parts} $ $\frac{1^{at} A1}{16 \text{ for correct integration by parts} $ $\frac{1^{at} A1}{16 \text{ for clear use of the correct limits} $

Q4.

Question Number	Scheme		Marks
(a)	$k = \frac{x - x - x}{2 - 3 - 4 - 5 - 6}$	B1 correct shape with the end points on the <i>x</i> -axis B1 correct shape with <i>k</i> , 2,3,5,6 marked on in the correct places. Allow $1/3$ for <i>k</i>	B1 B1
			(2)
(b)	$\frac{1}{2} \times k + 2 \times k + \frac{1}{2} \times k = 1$	MI An attempt to find area using any correct method and putting equal to 1	MI
	$3k = 1$ $k = \frac{1}{3}$	Al cso. AG Method must be shown and there must be no incorrect working. Need to have these 3 lines as a minimum.	Al cso
	alternative		(2)
	$\int_{2}^{3} k(x-2) dx + \int_{3}^{5} k dx + \int_{5}^{6} k(6-x) dx = 1$ $\left[\frac{kx^{2}}{2} - 2kx\right]_{2}^{3} + \left[kx\right]_{3}^{5} + k\left[6x - \frac{x^{2}}{2}\right]_{5}^{6} = 1$	M1 Correct integration to find the whole area, put = 1 and an attempt to integrate, ignore limits for attempt $x^n \rightarrow x^{n+1}$	мі
	$\left(-\frac{3}{2}k+2k\right)+5k-3k+\left(18k-\frac{35}{2}k\right)=1$		
	$3k = 1$ $k = \frac{1}{3}$	A1 cso Method must be shown – at least one step between integration and $k = 1/3$ and there must be no incorrect working.	Al cso
	SC For using verification they could get M		
(c)		Alternative	
	$\begin{cases} 0 & x < 2 \\ \frac{x^2}{6} - \frac{2x}{3} + \frac{2}{3} & 2 \le x \le 3 \end{cases}$	$\begin{bmatrix} 0 & x < 2\\ \frac{1}{2}(x-2)^2 & 2 \le x \le 3 \end{bmatrix}$	MIA1
	$F(x) = \begin{cases} 6 & 3 & 3 \\ \frac{x}{3} & -\frac{5}{6} \\ \frac{x}{3} & -\frac{5}{6} \end{cases} \qquad 3 < x < 5$	$F(x) = \begin{cases} \frac{1}{6}(x-2)^2 & 2 \le x \le 3\\ \frac{x}{3} - \frac{5}{6} & 3 < x < 5 \end{cases}$	MIA1
	3 6 x ²	3 6 $1 (6 x)^2$	MIA1
	$2x - \frac{x^2}{6} - 5 \qquad 5 \le x \le 6$	v	B1
	(1 x>6	L 1 x>6	
5			(7

1st MI For $2 \le x \le 3$, $\int_{2}^{x} \frac{1}{3}(t-2)dt = \left[\frac{t^{2}}{6} - \frac{2t}{3}\right]_{2}^{x}$ and attempt to subst 2 and x Or $F(x) = \frac{x^{2}}{6} - \frac{2x}{3} + C$ and using F(2) = 01st A1 for the second row in the above F(x) oe. Condone < instead of \le and vice versa 2nd MI For $3 \le x \le 5$, $\int_{3}^{x} \frac{1}{3}dt + "\frac{1}{6}" = \left[\frac{t}{3}\right]_{3}^{x} + "\frac{1}{6}"$ and attempt to subst 3 and x. Allow F(3) instead of $"\frac{1}{6}"$ or $F(x) = \frac{x}{3} + C$ and using $F(3) = \frac{1}{6}$ or $F(5) = \frac{5}{6}$ 2nd A1 for the third row in the above F(x) oe. Condone \le instead of < and vice versa 3rd MI For $5 \le x \le 6$, $\int_{5}^{x} 2 - \frac{t}{3}dt + "\frac{5}{6}" = \left[2t - \frac{t^{2}}{6}\right]_{5}^{x} + "\frac{5}{6}"$ and subst 5 and x. Allow F(5) instead of $"\frac{5}{6}"$ or $F(x) = 2x - \frac{x^{2}}{6} + C$ and using F(6) = 13rd A1 for the fourth row in the above F(x) oe. Condone \le instead of and vice versa B1 For both Top line of F(x) is 0 x < 2 and Bottom line of F(x) is 1 x > 6Condone \le instead of \le and vice versa. Allow one of the lines to have otherwise as its range

(d)	$2x - \frac{x^2}{6} - 5 = 0.9$	1 st MI using their cdf for $5 \le x \le 6 = 0.9$	мі
	$\frac{x^{2}}{6} - 2x + 5.9 = 0$ $x = \frac{2 \pm \sqrt{4 - 4 \times \frac{1}{6} \times 5.9}}{\frac{1}{3}}$	2 nd M1 using either the quadratic formula or completing the square or factorising or any correct method to solve their 3 term quadratic which must have been correctly rearranged. If they write the formula down then allow a slip. If no formula written down then it must be correct for their equation. May be implied by awrt 5.23 or 6.77	MI
	x = awrt 5.23	Al awrt 5.23 – (allow $\frac{20-\sqrt{15}}{5}$). If they have 6.77 this must be eliminated	Al
			(3)
(e)	E(X) = 4		
	$F(5.5) - F(4) = \frac{11}{24}$	M1 for writing or attempting to find $F(5.5) - F(4)$ or $P(X \le 5.5) - P(x \le 4)$ or P(X < 5.5) - P(x < 4) or $F(5.5) - 0.5$ or $\int_{4}^{5} k dx + \int_{5}^{5.5} k(6-x) dx$ with correct limits and $x^n \to x^{n+1}$. May be implied by a correct answer.	MI
		A1 $\frac{11}{24}$ oe or awrt 0.458	Al
			(2)
			(Total 16)

Q5.

Question Number			Marks
(a)	$E(X) = \frac{1}{9} \int_{1}^{4} (4x^{2} - x^{3}) dx$	1 st M1 Using $\int xf(x) dx$, multiplying out and at least one of $x^2 \rightarrow x^3$ or $x^3 \rightarrow x^4$ ignore limits	мі
	$=\frac{1}{9}\left[\frac{4x^{3}}{3}-\frac{x^{4}}{4}\right]_{1}^{4}$	1 st A1 correct integration, ignore limits	Al
	$=\frac{1}{9}\left[\frac{4\times4^{3}}{3}-\frac{4^{4}}{4}\right]-\frac{1}{9}\left[\frac{4}{3}-\frac{1}{4}\right]$	2 nd M1d subst in correct limits (allow 1 sign error)	Mld
	$=\frac{9}{4}$ or 2.25	2 nd A1 cao allow equivalent fractions	Al
2			(4
(b)	$P(X > 2.5) = \frac{1}{9} \int_{2.5}^{4} x(4-x) dx$	MI for using $\frac{1}{9} \int_{2.5}^{4} x(4-x) dx$ or $1 - \frac{1}{9} \int_{1}^{2.5} x(4-x) dx$ correct limits needed at some point Or $1 - \left(\frac{2}{9}x^2 - \frac{1}{27}x^3 - \frac{5}{27}\right)$ and attempt to subst 2.5	м
	$=\frac{1}{9}\left[2x^{2}-\frac{x^{3}}{3}\right]_{2.5}^{4}$	1 st A1 correct integration with correct limits at some point	Al
	$=\frac{3}{8}$ or 0.375	2 nd A1 allow equivalent fractions	Al
			(3
(c)	P(both batteries working after 25 hours) = $(0.375)^2$	M1 (their part(b)) ² or writing $(P(X>2.5))^2$	мі
	$= 0.140625 \text{ or } \frac{9}{64}$	Al awrt 0.141	Al
(1)			(2
(d)	$P(X > 1.6) = \frac{1}{9} \int_{1.6}^{4} x(4-x) dx$ $= \frac{96}{125} \text{ or } 0.768$	B1 0.768 or awrt 0.77 or 0.5898or awrt 0.59. These may be seen in the conditional probability or implied by a correct final answer	B1
	P(works for 25 hours worked for 16 hours) = $\frac{0.140625}{(0.768)^2}$	$ \begin{array}{c} \mathbf{MI} \frac{\text{their part(c)}}{prob} \text{or } \frac{(\text{their}(b))^2}{prob} \\ \text{and numerator} < \text{denominator} \end{array} $	мі
	= 0.2384	A1 awrt 0.238	Al
	NB if use one battery rather than 2 they co	uld get B1 M0 A0	
			(3
			(Total 12

Q6.

(a) $k\left(2^{3}-\frac{3}{8}2^{4}\right)=1$ B1* 2k=1 $k=\frac{1}{2}*$ (B1*) Or $\frac{1}{2}\left(2^{3}-\frac{3}{8}2^{4}\right)=1$ $\therefore k=\frac{1}{2}*$ (B1*) (b) $f(x)=k\left[3x^{2}-\frac{3}{2}x^{3}\right]$ M1 (i) $\int_{0}^{2}xf(x) dx=k\int_{0}^{2}\left(3x^{3}-\frac{3}{2}x^{4}\right)dx$ M1d $=\left[\frac{3x^{4}}{8}-\frac{3x^{5}}{20}\right]_{0}^{2}$ $=\frac{6}{5} \text{ or } 1.2$ A1 (ii) $3x-\frac{9x^{2}}{4}=0$ M1d $x\left(3-\frac{9x}{4}\right)=0$ M1d $x=0 \text{ or } \frac{4}{3}$ $\therefore \text{ mode} = \frac{4}{3}$ A1	AOs	Marks	Scheme	Question
$k = \frac{1}{2} *$ Or $\frac{1}{2} \left(2^3 - \frac{3}{8} 2^4 \right) = 1 \therefore k = \frac{1}{2} *$ (B1*) (D) (b) $f(x) = k \left[3x^2 - \frac{3}{2} x^3 \right]$ (I) $(i) \int_0^2 xf(x) dx = k \int_0^2 \left(3x^3 - \frac{3}{2} x^4 \right) dx$ (I) $(i) \int_0^2 xf(x) dx = k \int_0^2 \left(3x^3 - \frac{3}{2} x^4 \right) dx$ M1d $= \left[\frac{3x^4}{8} - \frac{3x^5}{20} \right]_0^2$ $= \frac{6}{5} \text{ or } 1.2$ A1 $(ii) 3x - \frac{9x^2}{4} = 0$ M1d $x \left(3 - \frac{9x}{4} \right) = 0$ M1d $x = 0 \text{ or } \frac{4}{3} \therefore \text{ mode} = \frac{4}{3}$ (6)	1.1b	B1*		(a)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
(b) $f(x) = k \left[3x^{2} - \frac{3}{2}x^{3} \right]$ (1) $f(x) = k \left[3x^{2} - \frac{3}{2}x^{3} \right]$ (1) $f(x) = k \left[3x^{2} - \frac{3}{2}x^{3} \right]$ (1) (1) $f(x) = k \left[3x^{2} - \frac{3}{2}x^{3} \right]$ $= \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20} \right]_{0}^{2}$ $= \frac{6}{5} \text{ or } 1.2$ (1) $H = \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20} \right]_{0}^{2}$ $= \frac{6}{5} \text{ or } 1.2$ (1) $H = \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20} \right]_{0}^{2}$ $= \frac{6}{5} \text{ or } 1.2$ (1) $H = \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20} \right]_{0}^{2}$ (1) $H = \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20} \right]_{0}^{2}$ $= \frac{6}{5} \text{ or } 1.2$ (1) $H = \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20} \right]_{0}^{2}$ (1) $H = \left[\frac{3x^{5}}{8} - \frac{3x^{5}}{20} \right]_{$			4	
(b) $f(x) = k \left[3x^2 - \frac{3}{2}x^3 \right]$ M1 (i) $\int_0^2 xf(x) dx = k \int_0^2 \left(3x^3 - \frac{3}{2}x^4 \right) dx$ M1d $= \left[\frac{3x^4}{8} - \frac{3x^5}{20} \right]_0^2$ $= \frac{6}{5} \text{ or } 1.2$ A1 (ii) $3x - \frac{9x^2}{4} = 0$ M1d $x \left(3 - \frac{9x}{4} \right) = 0$ M1d $x \left(3 - \frac{9x}{4} \right) = 0$ M1d (ii) $x = 0 \text{ or } \frac{4}{3} \therefore \text{ mode } = \frac{4}{3}$ (6)	2		$\operatorname{Or} \frac{1}{2} \left(\frac{2^2 - \frac{1}{8} 2^2}{8} \right)^{=1} \therefore k = \frac{1}{2}^{+1}$	
$\frac{f(x) = k \left[3x^2 - \frac{1}{2}x^2 \right]}{(i) \int_0^2 xf(x) dx = k \int_0^2 \left(3x^3 - \frac{3}{2}x^4 \right) dx}$ $= \left[\frac{3x^4}{8} - \frac{3x^5}{20} \right]_0^2$ $= \frac{6}{5} \text{ or } 1.2$ $(ii) 3x - \frac{9x^2}{4} = 0$ $x \left(3 - \frac{9x}{4} \right) = 0$ $M1d$ $x \left(3 - \frac{9x}{4} \right) = 0$ $M1d$ $(ii) x = 0 \text{ or } \frac{4}{3} \therefore \text{ mode } = \frac{4}{3}$ (6)		(1)	5 37	(b)
$= \left[\frac{3x^{4}}{8} - \frac{3x^{5}}{20}\right]_{0}^{2}$ $= \frac{6}{5} \text{ or } 1.2$ (ii) $3x - \frac{9x^{2}}{4} = 0$ M1d $x \left(3 - \frac{9x}{4}\right) = 0$ M1d $x = 0 \text{ or } \frac{4}{3} \therefore \text{ mode } = \frac{4}{3}$ (6)	2.1	M1	$f(x) = k \left\lfloor 3x^2 - \frac{3}{2}x^3 \right\rfloor$	(*)
$\begin{array}{c c} & = \frac{6}{5} \text{ or } 1.2 & \text{A1} \\ \hline & & \\ \hline & & \\ (\text{ii}) \ 3x - \frac{9x^2}{4} = 0 & \text{M1d} \\ \hline & & \\ x \left(3 - \frac{9x}{4}\right) = 0 & \text{M1d} \\ \hline & & \\ x = 0 \text{ or } \frac{4}{3} & \therefore \text{ mode} = \frac{4}{3} & \text{A1} \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}$	1.16	M1d	(i) $\int_0^2 x f(x) dx = k \int_0^2 \left(3x^3 - \frac{3}{2}x^4 \right) dx$	
5 (ii) $3x - \frac{9x^2}{4} = 0$ M1d $x \left(3 - \frac{9x}{4}\right) = 0$ M1d $x = 0 \text{ or } \frac{4}{3} \therefore \text{ mode } = \frac{4}{3}$ (6)			$= \left[\frac{3x^4}{8} - \frac{3x^5}{20}\right]_0^2$	
$x\left(3-\frac{9x}{4}\right)=0$ M1d $x=0 \text{ or } \frac{4}{3} \qquad \therefore \text{ mode} = \frac{4}{3}$ (6)	1.1b	A1	$=\frac{6}{5}$ or 1.2	
$x\left(3-\frac{9x}{4}\right)=0$ M1d $x=0 \text{ or } \frac{4}{3} \qquad \therefore \text{ mode} = \frac{4}{3}$ (6)	3.1a	M1d	(ii) $3x - \frac{9x^2}{4} = 0$	
	1.16	M1d		
	1.16	A1	$x = 0 \text{ or } \frac{4}{3} \qquad \therefore \text{ mode} = \frac{4}{3}$	
		(6)		
(c) Mode > mean implies it is negative skew BIft	2.4	B1ft	Mode > mean implies it is negative skew	(c)
(1)		(1)		

Note	es:			
(a)	B1* substituting $x = 2$ into $F(x)$ and equating to 1 leading to $k = \frac{1}{2}$ with no $k = \frac{1}{2}$ with			
		Minimum subst seen is $k(8-6) = 1$ or $0.5(8-6) = 1$		
(b)	M1	Realising they need to find the pdf and attempting to differentiate $k\left[x^3 - \frac{3}{8}x^4\right]$ at		
3		least 1 correct term		
(i)	M1d	dep on 1 st M1 Attempting to find $\int_0^2 x(\text{their } f(x)) dx$ At least one correct term ft their pdf		
200	A1	$\frac{6}{5}$ or 1.2 oe NB 1.2 with no working gains M0M0A0		
(ii)	M1d	dep on 1st M1 for realising they need to differentiate their pdf. At least one correct term but ft their pdf		
3	M1d	Dep on 3^{rd} M1. correct method for solving their differential of their pdf = 0 pdf must be of the form $ax^2 + bx$		
	A1	\therefore mode = $\frac{4}{3}$ only. They must eliminate 0		
(c)	B1ft	ft their mode and mean or a correct sketch.		

Q7.

Question	Scheme	Marks	AOs
(a)	$\frac{\int \frac{t}{120} dt = \frac{t^2}{240} \text{ and use of } F(4) = 0 \text{ or } F(16) = 1 \text{ or limits of } t \text{ and } t \text{ or attempt at area of trapezium allow 1 mistake. } \frac{1}{2} \times (t-4) \left(\frac{4}{12}\right)^2 $	M1	2.1
	$=\frac{t^2}{240}-\frac{1}{15}$	A1	1.1b
		(2)	
(b)	$F(10) - F(5) = \frac{100}{240} - "c" - \frac{25}{240} + "c"$ $= \frac{5}{16}$	M1	1.1b
	$=\frac{5}{16}$	A1	1.18
		(2)	
(c)	$\frac{m^2}{240} - \frac{1}{15} = 0.5$	M1	1.18
	m = 11.66 awrt 11	.7 A1	1.11
		(2)	
(d)	$F(k) = \frac{2}{3}(1 - F(k))$ or $\int_{4}^{k} \frac{t}{120} dt = \frac{2}{3} \int_{k}^{16} \frac{t}{120} dt$	M1	3.1a
	$\frac{k^2}{240} - \frac{1}{15} = \frac{2}{3} \left(1 - \left(\frac{k^2}{240} - \frac{1}{15}\right) \right) \text{ or } \frac{k^2}{240} - \frac{1}{15} = \frac{2}{3} \times \left(\frac{16}{15} - \frac{k^2}{240}\right)$	$\left(\frac{1}{0}\right)$ dM1	1.18
	$\frac{k^2}{144} = \frac{7}{9}$		
	$k = \sqrt{112}$ or awrt 10.6	A1	1.11
	Alternative		
	Let $P(T < k) = p$ then $p = \frac{2}{3}(1-p)$: $p = \frac{2}{5}$	(M1)	
	$\frac{k^2}{240} - \frac{1}{15} = \frac{2}{5}$	(dM1)	
	$k = \sqrt{112}$ or awrt 10.6	(A1)	
		(3)	

Notes
(a) MI: for attempting to integrate and a correct method

A1: = t²/240 - 1/15 or = t²/240 - 0.0667

(b) MI: writing or using F(10) - F(5)

A1: awrt 5/16 or 0.3125 or exact equivalent

(c) MI: setting their F(t) = 0.5

A1: awrt 11.7 or 2√34 or exact equivalent

(d) MI: Setting up a correct equation to solve the mathematical problem or setting up correct equation to find p and an attempt to solve
dMI: attempted to integrate and limits substituted or using "Their F(k)" = "their p"
A1: √112 or awrt 10.6

Qu	Answer	Marks	AO
00000	$F(4) = 0 \implies 4p - 2k = 0$ or $F(9) = 1 \implies 9p - 3k = 1$	M1	2.1
(a)	Both	A1	1.1b
	Solving e.g. sub $k = 2p \implies 9p - 6p = 1$	M1	1.1b
	$p = \frac{1}{3} k = \frac{2}{3}$	A1	1.1b
60000		(4)	
(b)	Find $f(x)$: $f(x) = F'(x) = "\frac{1}{3}" - "\frac{2}{3}" \times \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{3}(1 - x^{-\frac{1}{2}})$	M1	3.1a
	$E(X^{2}) = \frac{1}{3} \int_{4}^{9} x^{2} (1 - x^{-\frac{1}{2}}) dx \underline{\text{or}} \frac{1}{3} \int_{4}^{9} (x^{2} - x^{\frac{1}{2}}) dx$	M1	2.1
	$1\left[r^{3} 2r^{\frac{5}{2}}\right]^{9}$ $1\left[\left(9^{3} 2\times 3^{5}\right)\left(64 2\times 2^{5}\right)\right]$ 2059	M1	1.1b
	$=\frac{1}{3}\left[\frac{x^3}{3} - \frac{2x^{\frac{5}{2}}}{5}\right]_4^9 \underline{\text{or}} \frac{1}{3}\left[\left(\frac{9^3}{3} - \frac{2\times3^5}{5}\right) - \left(\frac{64}{3} - \frac{2\times2^5}{5}\right)\right] = \frac{2059}{45}$	A1	1.10 1.1b
	$\operatorname{Var}(X) = "\frac{2059}{45}" - \left(\frac{119}{18}\right)^2$	M1	1.1b
	= 2.048765 = 2.05 (3sf) (*)	A1*	1.1b
		(6)	
(c)	$\left[f(x) = \frac{1}{3}\left(1 - \frac{1}{\sqrt{x}}\right)\right]$ so max is when x is greatest so] mode = 9	B1	2.2a
		(1)	
(d)	$\mathbf{F}(a) = \frac{7}{27} \implies a - 2\sqrt{a} - \frac{7}{9} = 0$	M1	3.1a
	$y^2 - 2y - \frac{7}{9} = 0 \implies (y - 1)^2 = \frac{16}{9}$	M1	2.1
	$y = \frac{7}{3}$ or $\left(-\frac{1}{3} \text{ not valid}\right)$ so $\underline{a = \frac{49}{9}}$	A1	3.2a
		(3)	
		(14 marks	5)

(c 8)		Notes
(a)	2 nd M1	for selecting a correct approach and getting 1 correct equation for 2 correct equations in p and k for solving two simultaneous equations (based on $F(x)$)- reducing to a linear eqn in 1 var for <u>both</u> correct values
(b)	0.0250	for realising need to find $f(x)$ first and attempt to differentiate $F(x)$ – some correct for attempting $\int x^2 f(x) dx$ ft their $f(x)$ provided different from $F(x)$
	1 st A1 4 th M1	for some correct integration using their $f(x)$ or a numerical expression for $E(X^2)$ for a correct value for $E(X^2)$ exact fraction or at least 45.755 for a correct method for $Var(X)$ ft their $E(X^2)$ for a fully correct solution
(c)	B1	for 9
(d)	1 st M1 2 nd M1 A1	for realising the need to use $F(x)$ and forming a correct equation in a (ft their p and k) for recognising equation as a quadratic and trying to solve for exact working and selection of the appropriate value

Q9.

Question	Scheme	Marks	AOs
(a)	$F(5) + (1 - F(8)) \qquad \left[\frac{3}{4} + \left(1 - \frac{15}{16}\right)\right]$	M1	2.1
	$=\frac{13}{16}$	A1	1.1b
		(2)	
(b)	$\mathbf{F}(m) = 0.5 \qquad \left[1.25 - \frac{2.5}{m} = 0.5 \right]$	M1	1.1b
	$m = \frac{10}{3}$	A1	1.1b
		(2)	
(c)	$f(x)[=\frac{d}{dx}(F(x))] = 2.5x^{-2}$	M1	2.1
	$f(x)[=\frac{d}{dx}(F(x))] = 2.5x^{-2}$ $E(X^{2})[=\int_{2}^{10} x^{2}f(x) dx] = \int_{2}^{10} 2.5 dx$	M1	1.1b
	= 20	A1	1.1b
		(3)	
(d)(i)	2 10	M1	1.1b
100210	2 and 10 correctly labelled on horizontal axis	A1	2.1
(ii)	Therefore positive skew.	A1	2.2b
		(3)	
	*	(10) mark

9	Notes	
(a)	M1: Equivalent correct probability statement, e.g. $[1 - (F(8) - F(5))]$ A1: $\frac{13}{16}$ oe	
(b)	M1: Use of $F(m) = 0.5$ A1: $\frac{10}{3}$ oe	
(c)	M1: Realising that $f(x)$ is required and attempting to differentiate $F(x)$ M1: Use of $\int_{2}^{10} x^2 f(x) dx$ A1: 20 cao	
(d)(i) and (ii)	M1: Correct shape A1: Correct labels A1: Positive skew provided M1 scored	

Q10.

Question	Scheme	Marks A	Os
(a)	$P(X < 4) = \frac{(4-1) \times 0.1}{2} \text{or } \int_{1}^{4} \frac{1}{30} (x-1) dx$	M1 2	.1
	= 0.15	A1 1.	1b
1		(2)	
(b)	$\begin{array}{c c} \frac{(7-1)\times 0.2}{2} + \dots & \int_{1}^{7} \frac{1}{30} (x-1) dx + \dots & \int_{1}^{7} 0 \\ \dots & 0.1(x-7) & \dots & \int_{7}^{x} 0.1 dt & F(7) \\ \end{array}$	1dx M1 3.	1a
	$0.1(x-7)$ $\int_{7}^{x} 0.1 dt$ or F(1)	M1 = 0.1x + c 1) = 0.1x + c	1b
	$F(x) = 0.1x - 0.1$ [for $7 \le x \le 11$]	A1 1.	1b
		(3)	
		(5 ma	rks)
	Notes		
(a)	M1: Use of area of triangle or integration with Condone $\frac{4 \times 0.1}{2}$ or $\int_{1}^{4} \frac{1}{30}(x) dx$ for M1 A1: 0.15 oe	h limits to find required area	
(b)	M1: Complete method for finding the cdf inc. Condone one slip for the area from $1 \le x$ M1: Attempt at area from $7 \le x \le 11$ A1: $0.1x - 0.1$		

Question	Scheme	Marks	AOs
(a)	$\int_{2}^{m} (0.8 - 6.4x^{-3}) dx = 0.5$	M1	2.1
	$\left[0.8x + 3.2x^{-2}\right]_2^m = 0.5$	M1	1.1b
	$0.8m + \frac{3.2}{m^2} - \left(0.8(2) + \frac{3.2}{2^2}\right) = 0.5 \rightarrow 0.8m + \frac{3.2}{m^2} - 2.9 = 0 \rightarrow m^3 - 3.625m^2 + 4 = 0^*$	A1*cso	1.1b
	m 5.025m ++=0	(3)	
(b)(i)	$f'(x) = 19.2x^{-4}$	B1	1.1b
(ii)	Since $f'(x) > 0$, $f(x)$ is increasing (the pdf has its maximum value at the upper end of the interval), the mode is 4	B1	2.4
		(2)	
(c)	$E(X) = \int_{2}^{4} x(0.8 - 6.4x^{-3}) dx$	M1	1.1b
	$E(X) = \left[0.4x^{2} + 6.4x^{-1}\right]_{2}^{4}$ = 0.4(4 ²) + 6.4(4 ⁻¹) - (0.4(2 ²) + 6.4(2 ⁻¹))[= 3.2]	M1	1.1b
	$Var(X) = 10.5 - '3.2'^{2}$	M1	1.1b
	Var(X) = 0.26	A1	1.1b
		(4)	
		(9) marks
	Notes		
(a)	M1: Integral = 0.5 (ignore limits) M1: Integration with limits A1*cso: Given answer with at least one line of intermediate	working.	
(b)(i) (ii)	B1: $19.2x^{-4}$ B1: Correct reasoning and conclusion (allow equivalent correturning points with a sketch of $f(x)$). Do not allow unsupported comments on their own to score e.g highest point on $f(x)$ '	ct reasoning	
(c)	M1: Multiplying out $xf(x)$ and attempt to integrate M1: correct use of limits (implied by 3.20e) M1: Use of $E(X^2) - [E(X)]^2$ A1: 0.26		

Q12.

Question	Scheme	Marks	AOs
(a)	$E(K) = \frac{2E(X)}{n(n+1)} + \frac{4E(X)}{n(n+1)} + \frac{6E(X)}{n(n+1)} + \dots + \frac{2nE(X)}{n(n+1)} \text{ oe}$	M1	3.1a
	$=\frac{1}{n(n+1)}\left(\sum_{r=1}^{n}2r\right)E(X)=\frac{1}{n(n+1)}\left(\frac{(2+2n)n}{2}\right)E(X)(=E(X))$	M1	2.1
	$=\mu$ (therefore K is an unbiased estimator of μ)	A1cso	1.1b
	$E(L) = \frac{2E(X)}{3} + \frac{(n-2)E(X)}{3(n-2)} = \frac{2E(X)}{3} + \frac{1E(X)}{3} (= E(X))$	M1	1.1b
	$=\mu$ (therefore L is an unbiased estimator of μ)	A1cso	1.1b
		(5)	
(b)(i)	$\operatorname{Var}(K) = \operatorname{Var}\left(\frac{2X}{n(n+1)}\right) + \operatorname{Var}\left(\frac{4X}{n(n+1)}\right) + \dots + \operatorname{Var}\left(\frac{2n(X)}{n(n+1)}\right)$	M1	3.1a
	$= \frac{2^2}{n^2(n+1)^2} \operatorname{Var}(X) + \frac{4^2}{n^2(n+1)^2} \operatorname{Var}(X) + \dots + \frac{(2n)^2}{n^2(n+1)^2} \operatorname{Var}(X)$	М1	1.1b
	$=\frac{\sum_{r=1}^{n}(2r)^{2}}{n^{2}(n+1)^{2}}\operatorname{Var}(X)=\frac{4\sum_{r=1}^{n}r^{2}}{n^{2}(n+1)^{2}}\operatorname{Var}(X)=\frac{4}{6}\frac{(n)(n+1)(2n+1)}{n^{2}(n+1)^{2}}\sigma^{2}$	M1	2.1
	$=\frac{2(2n+1)}{3n(n+1)}\sigma^2$	A1	1.1b
(ii)	$\operatorname{Var}(L) = \operatorname{Var}\left(\frac{X_1 + X_2}{3}\right) + \operatorname{Var}\left(\frac{X_3 + X_4 + \dots + X_n}{3(n-2)}\right)$	M1	1.1b
	$= \frac{2}{9} \operatorname{Var}(X) + \frac{(n-2)}{9(n-2)^2} \operatorname{Var}(X)$	M1	2.1
	$=\frac{2n-3}{9(n-2)}\sigma^2$	A1	1.1b
		(7)	
(c)	For large values of n $\operatorname{Var}(K) \to 0$ $\operatorname{Var}(L) \to \frac{2}{9}(\sigma^2)$	M1	2.1
	(Since both are unbiased,) the better estimator is the one with the smaller variance or $0 < \frac{2}{9}(\sigma^2)$	M1	2.4
	Therefore K is the better estimator and Korhan wins the challenge.	A1	2.2a
		(3)	

	Notes	
(a)	M1: Using independence to set up expression for E(K) M1: Use of $\sum_{r=1}^{n} r \left(=\frac{n(n+1)}{2}\right)$ A1cso: Correct conclusion from correct working M1: Using independence to set up expression for E(L) A1cso: Correct conclusion from correct working	
(b)(i)	M1: Using independence to set up expression for Var(K) M1: Use of Var(aX) = a^2 Var(X) Implied by $\frac{2^2}{n^2(n+1)^2}$	
(ii)	M1: Use of $\sum_{r=1}^{n} r^2$ A1: Correct equivalent expression for Var(K) oe M1: Using independence to set up expression for Var(L) M1: Use of Var(aX) = a^2 Var(X) and understanding Var($X_1 + X_2$) = 2Var(X) Implied by either correct term A1: Correct equivalent expression for Var(L) oe	
(c)	M1: Finding correct limits as <i>n</i> gets larger for each expression allow ft Note: Solving $\frac{2n-3}{9(n-2)} = \frac{2(2n+1)}{3n(n+1)} \rightarrow n = -0.53$, 2.46, 4.57 so allow comments relating to $n \ge 5$ (4.57) M1: Correct explanation A1: Deducing that Korhan is the winner (dependent upon both M marks)	

Q13.

Question	Scheme	Marks	AOs
(a)	$1.5m - 0.25m^2 - 1.25 = 0.5 (\rightarrow 0.25m^2 - 1.5m + 1.75 = 0)$	M1	1.1b
	$m = 3 - \sqrt{2}$ (reject $m = 3 + \sqrt{2}$)	A1	2.2a
		(2)	
(b)	$P(X < 1.6 X > 1.2) = \frac{P(1.2 < X < 1.6)}{P(X > 1.2)}$	M1	3.1a
	$\frac{F(1.6) - F(1.2)}{1 - F(1.2)}$	M1	1.1b
	$=\frac{32}{81}$	A1	1.1b
		(3)	
(c)	$P(Y,, y) = P\left(\frac{1}{X}, y\right)$		
	$= P\left(X \dots \frac{1}{y}\right) = 1 - F\left(\frac{1}{y}\right)$	M1	3.1a
	$=1-(\frac{1.5}{y}-0.25(\frac{1}{y})^2-1.25)$	M1	1.1b
	$F(y) = \begin{cases} 0 & y < \frac{1}{3} \\ 2.25 - \frac{1.5}{y} + 0.25(\frac{1}{y})^2 & \frac{1}{3} \le y \le 1 \\ 1 & y > 1 \end{cases}$	A1 A1	2.1 1.1b
		(4)	
(d)	$f(y) = \frac{d}{dy} (F(y)) = 1.5y^{-2} - 0.5y^{-3} \rightarrow f'(y) = -3y^{-3} + 1.5y^{-4}$	M1	3.1a
	$f'(y) = -3y^{-3} + 1.5y^{-4} = 0$	depM1	1.1b
	$1.5y^{-4} = 3y^{-3} \rightarrow \frac{1.5}{y^4} = \frac{3}{y^3}$	а. — с	
	[Mode of $Y =]0.5$ (since $f''(0.5) = -48 < 0$)	A1	1.1b
		(3)	
	<u>.</u>	(12	2 mark

	Notes	
(a)	M1: Correct equation for <i>m</i> A1: $m = 3 - \sqrt{2}$ only (isw if exact answer is given then rounded)	
(b)	M1: Determining the two probabilities required to find the probability M1: Correct ratio of probabilities A1: allow awrt 0.395	
(c)	M1: Realising that $P(X \frac{1}{y})$ is necessary M1: Correct use of $F(x)$ A1: Determining correct limits (allow \leq for $<$ etc.) A1: All lines of cdf correct (ignoring limits) must be in terms of y SC: If 0 scored, then $[F(y) =] \frac{15}{y} - 0.25(\frac{1}{y})^2 - 1.25 \frac{1}{3} \leq y \leq 1$ scores M0M0A1A0	
(d)	M1: Realising that the cdf must be differentiated twice depM1: (dep on previous M1) Equating their $f'(y) = 0$ with attempt to solve A1: 0.5 cao	

Question Number		Scheme	Marks
(a)	$\left[E(X) = \frac{\alpha + \beta}{2} = 3.5 \right], \Rightarrow \alpha + \beta = 7$	Bl Correct equation. Need not be simplified	B1
	$\begin{bmatrix} P(X > 5) = \frac{\beta - 5}{\beta - \alpha} = \frac{2}{5} \end{bmatrix},$ $\Rightarrow 5(\beta - 5) = 2(\beta - \alpha)$	M1 a second correct equation, Using simultaneous equations and eliminating α or β to gain a value of α and β .	МІ
	<i>α</i> = -4	1 st A1 for -4	Al
	$\beta = 11$	2 nd A1 for 11	Al
		NB Award full marks for $\alpha = -4, \beta = 11$	
			(4)
(b)(i)	$\frac{c+4}{15} = \frac{2}{3}$		
	[<i>c</i> =] 6	B1 for 6	Bl
(ii)	$P(6 < X < 9) = \frac{1}{15} \times (3)$	M1 $\frac{1}{\beta - \alpha} \times (9 - c)$ or $[F(9) - F(c)] = \frac{13}{15} - \frac{2}{3}$ SC if 9 > "their β " award for $1 - \frac{2}{3}$	мі
	= 0.2	Alcso 0.2 oe	Alcso
			(3)
(c)	$[P(S < 45)] = \frac{3}{10}$	B1 $\frac{3}{10}$ seen – it does not need to be associated with P (S < 45)]	B1
	$[P(S > 55)] = \frac{1}{2}$	B1 $\frac{1}{2}$ seen—it does not need to be associated with P (S > 55)]	B1
	$total = \frac{3}{10} + \frac{1}{2} = \frac{4}{5}$	MI for adding their two areas and the total <1. Do not allow $2 \times a$ single area Al $\frac{4}{5}$ oe NB Award full marks for $\frac{4}{5}$	MIA1
		-	(4)
			(Total 11)

Q15.	
------	--

Question	Scheme	Marks	AOs
(a)	$\begin{split} & [\mathrm{E}(X) = 2\beta] \\ & \mathrm{E}(A) = \mathrm{E}\left(\frac{X_1 + X_2}{2}\right) = \frac{1}{2}[\mathrm{E}(X) + \mathrm{E}(X)] \\ & \mathrm{E}(B) = \mathrm{E}\left(\frac{X_1 + 2X_2 + 3X_3}{8}\right) = \frac{1}{8}[\mathrm{E}(X) + 2\mathrm{E}(X) + 3\mathrm{E}(X)] \\ & \mathrm{E}(C) = \mathrm{E}\left(\frac{X_1 + 2X_2 - X_3}{8}\right) = \frac{1}{8}[\mathrm{E}(X) + 2\mathrm{E}(X) - \mathrm{E}(X)] \end{split}$	M1	3.1a
	Bias for $A = E(A) - \beta = 2\beta - \beta = \beta$ Bias for $B = E(B) - \beta = 1.5\beta - \beta = 0.5\beta$ Bias for $C = E(C) - \beta = 0.5\beta - \beta = -0.5\beta$	M1 A1 A1 A1	2.1 1.1b 1.1b 1.1b
		(5)	
(b)	$[\operatorname{Var}(X) = \frac{4}{3}\beta^{2}]$ Better estimator would have the smallest bias and the least variance. <i>B</i> and <i>C</i> have equal bias, so we select the estimator with the smallest variance $\operatorname{Var}(B) = \operatorname{Var}\left(\frac{X_{1} + 2X_{2} + 3X_{3}}{8}\right)$ $= \frac{1}{64}[\operatorname{Var}(X) + 4\operatorname{Var}(X) + 9\operatorname{Var}(X)]$ $\operatorname{Var}(C) = \operatorname{Var}\left(\frac{X_{1} + 2X_{2} - X_{3}}{8}\right)$ $= \frac{1}{64}[\operatorname{Var}(X) + 4\operatorname{Var}(X) + \operatorname{Var}(X)]$	М1	2.1
	$\operatorname{Var}(B) = \frac{7}{32} \operatorname{Var}(X) \left[= \frac{7}{24} \beta^2 \right]$ $\operatorname{Var}(C) = \frac{3}{32} \operatorname{Var}(X) \left[= \frac{1}{8} \beta^2 \right]$	A1 A1	1.1b 1.1b
	(Since both have same bias and) Var(C) < Var(B) therefore C is the better estimator.	B1ft	2.2a
		(4)	
(c)	Any unbiased estimator, e.g. $\frac{X_1 + X_2 + X_3}{6}$	B1	3.5c
		(1)	
		(1	0 marks

	Notes
	M1: Using independence to calculate the $E(A)$, $E(B)$ or $E(C)$ M1: Use of bias = $E(X) - \beta$
(a)	A1: Correct bias for A A1: Correct bias for B A1: Correct bias for C [allow $+0.5\beta$]
(b)	 M1: Correct ones for C [anow 10.5p] M1: Realising that variances need to be compared and attempt at linear combination of variances for B or C A1: Correct Var(B) A1: Correct Var(C) A1ft: Correct comparison and deduction that C a better estimator than A and B
(c)	B1: Allow any unbiased estimator, e.g. $\frac{X_1}{2}$

Q16.

Question	Scheme	Marks	AOs
(a)	$\left[P(T < 1) = \frac{1 - 0.5}{2.5 - 0.5} \right] = \frac{1}{4}$	B1	3.4
		(1)	
(b)	$\mathbf{P}\left(\{T < 2.25\} \cap \left\{\frac{1}{T^2} < 2.25\right\}\right) = \mathbf{P}\left(\{T < 2.25\} \cap \left\{T^2 > \frac{4}{9}\right\}\right)$	M1	2.1
	$P\left(\frac{2}{3} < T < 2.25\right) = \frac{2.25 - \frac{2}{3}}{2.5 - 0.5}$	M1	1.1b
	$=\frac{19}{24}$	A1	1.1b
		(3)	
(c)	E(R) = 1.5	B1	1.1b
	$\mathbf{E}\left(\frac{2}{R^2}\right) = \int_{0.5}^{2.5} \left(\frac{1}{2.5 - 0.5}\right) \frac{2}{r^2} \mathrm{d}r$	M1	3.1b
	$\left[-\frac{1}{r}\right]_{0.5}^{2.5}$	dM1	1.1b
	=1.6	A1	1.1b
	Greta is the expected winner since she has the higher expected value $(1.6 > 1.5)$	A1	2.2b
		(5)	
		(9	9 marks)
	Notes		
(a)	B1: 0.25 oe		
(b)	M1: Determining the conditions for both numbers to be sma M1: Use of uniform distribution for their region for T A1: allow awrt 0.792	ller than 2.2	5
(c)	 B1: 1.5 M1: Attempt to set up an integral for Greta's expectation dM1: (dep on previous M1) for integration of expectation A1: 1.6 A1: Greta with correct supporting reason and all previous m 	arks scored	in (c)
	SC: Use of $R = \frac{2}{R^2} \rightarrow R = \sqrt[3]{2} \rightarrow 1.5 > \sqrt[3]{2} (=1.25)$ therefore Raja is more likely		
	win a single game, scores B1M0M0A0A1.		

Q17.

Question	Scheme	Marks	AOs
	$P = 2(L + \frac{40}{L})$	M1	3.1a
	$\mathbf{f}(l) = \frac{1}{6}$	B1	3.1a 1.1b 2.1 1.1b 1.1b 1.1b 1.1b 7 marks
	$E(P) = E(2(L + \frac{40}{L})) = \int_{4}^{10} \frac{1}{6} ("2l + \frac{80}{l}") dl$	M1	2.1
	$= \left[\frac{1}{6}l^{2} + \frac{40}{3}\ln l \right]_{4}^{10}$	M1A1	
	$= \left(\frac{1}{6}(100) + \frac{40}{3}\ln 10\right) - \left(\frac{1}{6}(16) + \frac{40}{3}\ln 4\right)\right)$	M1	1.1b
	= 26.217 awrt 26.2	A1	1.1b
		(7 marks)
6	Notes		
	M1: Finding an expression for the perimeter in terms of <i>L</i> B1: Correct distribution for <i>L</i> (may be implied by $E(L) = 7$) M1: Setting up integral for expectation of perimeter (allow 2 separate integrals e.g. $2(7) + \int_{4}^{10} \frac{1}{6} \left(\frac{80}{l}\right) dl$)		
	M1: Attempt to integrate an expression for expectation of perseparate expressions) A1: Correct integration depM1: (dep on previous M1) Use of correct limits 10 and 4 A1: awrt 26.2 Note: exact value is $14 + \frac{40 \ln(2.5)}{3}$		ow two

Q18.

Question	Scheme	Marks	AOs
(a)	$\frac{1}{12}(a-5)^2 = \frac{27}{4}$	M1	3.1a
	$(a-5)^2 = 81$		
	a-5=9 or $a-5=-9$	A1	1.1t
	\therefore since $a > 5$ $a = 14^*$	A1cso*	2.2a
		(3)	
(b)	Correct method for $E(Y)$, $E(X)$ and $E(X^2)$ or $E(Y)$ and $E(X^2 + X)$	M1	3.1:
	$E(Y) = \int_{2}^{6} \frac{1}{20} y(2y-3) dy$	M1	1.11
	$=\frac{68}{15}$	A1	1.11
	$E(X) = \frac{5+14}{2} \text{ or } 9.5 \text{ and } \frac{27}{4} = E(X^2) - 9.5^2$ or $\int_5^{14} \frac{x^2}{9} dx \text{ or } \int_5^{14} \left(\frac{x^3}{9} + \frac{x^2}{9}\right) dx \text{ or } 3 \int_5^{14} \left(\frac{x^3}{9} + \frac{x^2}{9}\right) dx$	M1	1.18
	$E(X^2) = 97$ and $E(X) = 9.5$ or $E(X^2 + X) = 106.5$ or $3E(X^2 + X) = 319.5$	A1	1.11
	$E(T) = 3 \times "97" + 3 \times "9.5" + 2 \times \frac{68}{15}$ oe	M1	1.11
	$E(T) = \frac{9857}{30} *$	A1*cso	2.1
		(7)	G

	Notes
	M1: translating a problem in mathematical contexts into a correct equation. Allow
	$\frac{a^3 - 125}{3(a-5)} - \left(\frac{a+5}{2}\right)^2 = \frac{27}{4}$
2	A1: for $a-5=9$ or $a-5=-9$ or $a^2-10a-56=0$ or $a^3-15a^2-6a+280=0$
1	Alcso*: concluding it is 14 giving a reason why -4 is rejected
(b)	M1: For a complete method to solve the problem
1	M1: For an attempt at E(Y)
i i	A1: $=\frac{68}{15}$ or awrt 4.53
ĥ	M1: For an attempt at E(X) and E(X ²) or E(X ² + X) or $3 E(X^2 + X)$ Some sort of working must be seen for E(X ²) eg $\frac{27}{4} = E(X^2) - E(X)^2$. Allow Var(X) = E(X ²) - E(X) ² leading to = E(X ²)
2	A1: 319.5
- ž	M1: Method for finding $E(T)$ ft their values
2	A1*cso: Fully correct solution no errors, must have $E(T) = \frac{9857}{30}$ *

Question	Scheme	Marks	AOs
(a)	$P(A > 3) = \frac{2}{5}$	B1	1.1b
	$\left(\frac{2}{5}\right)^3 = \frac{8}{125}$	M1	<mark>1.1</mark> a
	$\left(\overline{5}\right) = \overline{125}$	A1	1.1b
		(3)	
(b)	$\mathbf{f}(y) = \frac{3y^2}{125}$	M1	2.1
	$E(Y) = \int_0^5 \frac{3y^3}{125} dy$ $= \left[\frac{3y^4}{500} \right]_0^5 \qquad \left[= \frac{15}{4} \right]$	M1	1.1b
	$\begin{bmatrix} 500 \end{bmatrix}_0 \qquad \begin{bmatrix} 4 \end{bmatrix}$ $\operatorname{Var}(Y) = \int_0^5 \left(\frac{3y^4}{125}\right) dy - \left(\frac{15}{4}\right)^2$	M1	1.1b
	= 0.9375*	A1*cso	1.1b
2		(4)	
(c)	Mode = 5	B1	1.2
	Or reason based on $\frac{df(y)}{dy} > 0$	B1	2.4

(d)	From a sketch or mode > mean therefore it has negative skew	B1ft	2.4
		(1)	
(e)	$\frac{\left(2k\right)^3}{125} - \frac{k^3}{125} = 0.189$	M1	3.1a
	$\frac{7k^3}{125} = 0.189$	A1	1.1b
	<i>k</i> = 1.5	A1	1.1b
		(3)	
		(13	marks

	Notes
(a)	B1: $\frac{2}{5}$ o.e. may be implied by a correct answer M1: $\left(\text{"their}\left(\frac{2}{5}\right) \right)^3$ may be implied by a correct answer A1: $\frac{8}{125}$ o.e.
(b)	 M1: realising that firstly need to find pdf f(y) and attempt to differentiate F(y) M1: Continuing the argument with an attempt to integrate y×"their f(y)" yⁿ → yⁿ⁺¹ M1: Integrating y²×"their f(y)" - ["their E(Y)"]² y" → yⁿ⁺¹ A1*: Complete correct solution no errors.
(c)	B1: 5 only B1: Explain their reason by either an accurate sketch or $\frac{df(y)}{dy} > 0$ therefore an increasing function oe
(d)	 B1ft: Explaining the reason for their answer. Follow through their part(b) or mean from(d) and mode from(c). A correct sketch of "their f(y)" – may be seen anywhere in question or ft their mean and mode plus a correct conclusion NB: Watch for gaming. A student who writes both negative skew with a reason and positive skew with a reason. Please send these to your Team Leader
(e)	M1: Attempting to translate the problem into an equation using $2k$ and k . Allow if the brackets are missing e.g. $\frac{2k^3}{125} - \frac{k^3}{125}$. No need for the 0.189 A1: A correct equation in any form A1: a correct answer only.

$5 \rightarrow F(X < \frac{2}{3}k)$ 0.25	B1 (shape) B1 (labels) (2) M1 M1	1.1b 1.1b 3.1a
1994 - 19 I. A 19	M1	
1994 - 19 I. A 19		
0.25	M1	1 11
		1.1b
	A1	1.1b
	(3)	
$\frac{1}{(-(-3))}x^3dx$	M1	2.1
$=\frac{1}{32}(5^4 - (-3)^4)$	dM1	1.1b
	A1*cso	1.1b
	(3)	
5	$\frac{1}{5 - (-3)} x^3 dx$ = $\frac{1}{32} (5^4 - (-3)^4)$	A1*cso

	Notes		
(a)	1 st B1 for correct shape 2 nd B1 for correct labels		
(b)	1^{st} M1 for simplifying to $P(X < \frac{2}{3}k)$ 1^{st} M1 for understanding $2[k-x]$ and $x = -1$ 2^{nd} M1 for equating probability expression to 0.25 1^{st} M1 for understanding $2[k-x]$ 		
(c)	1^{st} M1 for integrating $x^3 f(x)$ 2^{nd} M1 for use of correct limits (dependent on previous M1) A1*cso for fully correct solution leading to the given answer with no errors	seet	

Q21.	
------	--

(Continuous) uniform or recta	ngular		44	
			B1	1.2
			(1)	
[P(Y > 0) = P(5 - 2X > 0) =] P(X < 2.5)	$\mathbf{f}(y) = \begin{cases} \frac{1}{16} \end{cases}$	$-13 \le y \le 3$	M1	1.1b
$\frac{2.5-1}{8} = \frac{3}{16}$	$\frac{3-0}{16} = \frac{3}{16}$		A1	1.1b
			(2)	
E(Y) = 5 - 2E(X) [=5 - 2($\frac{1+9}{2}$)]	$E(Y) = \frac{-13+3}{2}$	1	M1	1.1b
		= <u>-5</u>	A1	1.1b
			(2)	
$[P(Y < 0) (X < 7.5)] = \frac{P(2.5 < 0)}{P(X)}$	< X < 7.5) (< 7.5)		M1	3.1a
$=\frac{\frac{7.5-2.5}{8}}{\frac{7.5-1}{8}} \left[=\frac{0.625}{0.8125} \right]$			M1	1.1b
		$=\frac{10}{13}$	A1	1.1b
			(3)	
	$\frac{P(X < 2.5)}{2.5 - 1} = \frac{3}{16}$ $\frac{2.5 - 1}{8} = \frac{3}{16}$ $\frac{E(Y) = 5 - 2E(X)}{(Y < 0)} = \frac{5 - 2(\frac{1+9}{2})}{P(X)}$ $\frac{P(Y < 0) (X < 7.5)] = \frac{P(2.5 - 9)}{P(X)}$ $\frac{7.5 - 2.5}{\frac{8}{7.5 - 1}} = \frac{0.625}{0.8125}$	$\frac{2.5-1}{8} = \frac{3}{16}$ $\frac{3-0}{16} = \frac{3}{16}$ $E(Y) = 5 - 2E(X)$ $= 5 - 2(\frac{1+9}{2})$ $E(Y) = \frac{-13+3}{2}$ $P(Y < 0) \mid (X < 7.5)] = \frac{P(2.5 < X < 7.5)}{P(X < 7.5)}$ $\frac{7.5 - 2.5}{\frac{8}{2.5-1}} \left[= \frac{0.625}{0.8125} \right]$	$\frac{P(X < 2.5)}{2.5 - 1} = \frac{3}{16}$ $\frac{3 - 0}{16} = \frac{3}{16}$ $\frac{3 - 0}{16} = \frac{3}{16}$ $E(Y) = 5 - 2E(X)$ $= 5 - 2(\frac{1 + 9}{2})$ $E(Y) = \frac{-13 + 3}{2}$ $= -5$ $P(Y < 0) \mid (X < 7.5)] = \frac{P(2.5 < X < 7.5)}{P(X < 7.5)}$ $\frac{7.5 - 2.5}{\frac{8}{16}} = \frac{0.625}{0.8125}$ $= \frac{10}{16}$	$\frac{2.5-1}{8} = \frac{3}{16}$ $\frac{3-0}{16} = \frac{3}{16}$ (2) $E(Y) = 5 - 2E(X)$ $= 5 - 2(\frac{1+9}{2})$ $E(Y) = \frac{-13+3}{2}$ M1 = -5 A1 (2) P(Y < 0) (X < 7.5)] = \frac{P(2.5 < X < 7.5)}{P(X < 7.5)} M1 $\frac{7.5 - 2.5}{8} = \frac{10}{0.8125}$ M1 $= \frac{10}{13}$ A1

	Notes
(a)	B1 for (Continuous) uniform or rectangular Discrete uniform is B0
(b)	M1 for using the distribution of X to obtain $P(X < 2.5)$ or for finding the distribution of Y in the range $-13 \le y \le 3$ A1 for $\frac{3}{16}$ or 0.1875
(c)	M1 for use of $E(aX+b)$ or for use of $\frac{a+b}{2}$ from the distribution of Y A1 for -5
(d)	1^{st} M1 for a correct ratio expression 2^{nd} M1 for a correct numerical expression A1 for $\frac{10}{13}$ SC: If M0M0A0 scored, then a correct numerator or correct denominator scores M0M1A0

Q22.

Question	Scl	neme	Marks	AOs
(a)	F(3) = 0 or $F(9) = 1$		M1	3.1a
	$c - 4.5(3^n) = 0$ and $c - 4.5(9^n) = 1$		A1	1.1b
	Eliminating c 1+4.5(9 ⁿ) = 4.5(3 ⁿ)	Eliminating n $\frac{\log(\frac{c-1}{4.5})}{\log(9)} = \frac{\log(\frac{c}{4.5})}{\log(3)}$	M1	1.1b
	Forming a 3 term quadratic $4.5(3^{2n}) - 4.5(3^n) + 1 = 0$	Forming a 3 term quadratic $4.5c^2 - 20.25c + 20.25 = 0$	M1	3.1a
	Solving 3TQ leading to a value for n $3^n = \frac{1}{3} \rightarrow n =$ or $3^n = \frac{2}{3} \rightarrow n =$	Solving 3TQ leading to a value for c c = 1.5 or $c = 3$	M1	1.1b
	n = -1 only (reject other sol	lution as <i>n</i> is an integer)	A1	2.3
	c = 1.5 only		A1ft	1.1b
			(7)	
(b)	[Let $q = $ lower quartile] "1.5" - 4.5(q^{-1}) = 0.25		M1	1.1b
	<i>q</i> = 3.6		A1ft	1.1b
			(2)	
			(9) mark

	Notes		
(a)	1 st M1 for use of either $F(3) = 0$ or $F(9) = 1$ 1 st A1 for two correct equations in <i>c</i> and <i>n</i> 2 nd M1 for eliminating one variable 3 rd M1 for realising that a quadratic formula is required to solve 4 th M1 for solving the quadratic formula leading to at least one value of <i>c</i> or <i>n</i> 2 nd A1 for $n = -1$ only 3 rd A1ft for $c = 1.5$ only (ft their <i>n</i> in a correct equation and dep on 1 st M1)		
(b)	M1 for use of $F(q) = 0.25$ A1ft for $q = 3.6$ (allow follow through on their integer value of <i>n</i>)		